

Role of Liquid Waste Pretreatment Technologies in Solving the DOE Clean-up Mission

W. R. Wilmarth March 5, 2009

HLW Corporate Board, Phoenix, AZ

Co-authors

- M. E. Johnson, CH2M Hill Plateau Remediation Company
- G. Lumetta, Pacific Northwest National Laboratory
- N. Machara, DOE Office of Engineering and Technology
- M. R. Poirier, Savannah River National Laboratory
- P. C. Suggs, DOE Savannah River
- M. C. Thompson, Savannah River National Laboratory, Retired

Background

- Separations is a fundamental business within DOE.
- The role of separations today is to expedite waste retrieval, processing and closure.
 - Recognized as part of E&T Roadmap
 - Focus is moving to In- or At-tank technologies
- Separation technologies are borne in fundamental discovery.
 - Key aspect of "Scientific Opportunities to Reduce Risk in Nuclear Process Science"
- Goal of paper was to convey "current state" of technologies and show applicability to an interim pretreatment facility at Hanford.

Key Conclusions for HLW Pretreatment Technology Selection

- First, requirements for low activity waste evolved differently at the two sites.
- Second, the tank wastes originated from different processes so have different compositions.
 - Multiple processes used at Hanford while only one basically at SRS
- Third, the technologies continue to evolve whereas selections are made at specific point in time.
- Fourth, the magnitude of the removal of a key radionuclide may not originate from a regulatory requirement.
 - Specific facility design feature may drive the radionuclide DF

HLW Requirements Evolution

Hanford

- Based on a determination prepared by the U.S. Nuclear Regulatory Commission (letter from Bernero, NRC, to Lytel, DOE, March 2, 1993)
- Establishes Class C limits for highly radioactive radionuclides
 - Requires Cs removal
 - Very limited Sr/TRU removal required
- Is concentration dependent and does not specify technology
- TriParty Agreement

Savannah River

- Based on Waste Determination IAW Section 3116 of the 2005 National Defense Authorization Act
- 3116 requires waste not exceed Class C limits
- Permit agreements limit waste to Class A values
 - Requires Cs removal
 - Requires Sr/TRU removal from most if not all wastes
- Specifies the technology as solvent extraction
- Federal Facility Agreement

Impacts of Different Waste Compositions

- Bismuth phosphate process added large amounts of Bi, S (as sulfate), and discarded U to waste
- Redox used dichromate as an oxidant
- K added as permanganate salt to oxidize

Impacts

- Presence of Cr in sludge calls for oxidative leaching in WTP Pretreatment and not at SRS
- Potassium eliminates CSSX as technology candidate
 - ➤ ORNL data up to 41 stages of contactors will be needed to achieve DF and CF targets of respectively 5000 and 5
 - ➤ If the CF requirement to 15, the number of stages more than doubles to 74

Impacts of Waste Composition – Alpha Removal

Hanford

- Class C limit (100 nCi/g)
- Only 2 tanks (AN-102, -107)
- Actinides (Am) complexed by sugars (gluconate) and Sr Complexed with EDTA used in Sr recovery operations
- MST does not work
- SRNL/PNNL developed isotopic dilution/permanganate treatment

Savannah River

- Permit constrained to 18 nCi/g in SS feed solution
- Most tanks require processing
- Sorbent technology developed at SRNL using Monosodium Titanate
- EM-21 investing in modified MST to increase throughput

When a Point in Time Counts – Evolution of Technology

- Selection of IX for WTP predates CSSX selection for SWPF
 - IX was selected by BNFL as part of the competition phase
 - CSSX chosen based on systems engineering evaluation of over 144 technologies
- Significant technical risk associated with resin maturity focused the SRS down selection to non-elutable IX (1998)
- Need established within WTP project for backup to SL644 (2002)
- Technical risks associated with sRF not fully resolved until 2007/8

Decontamination Factors (Regulatory vs. Operational)

Savannah River

- Permit limit imposed by SC DHEC forms the decontamination factor requirement
 - DF's can be as high as 40,000 but average under 20,000
 - Interim processing allows higher Cs with constraints and allows lower DF's
- Saltstone in its original form was contact maintenance and still is today

Hanford

- NRC determination limited to less that Class C (4600 Ci/m³) and waste would not require much (if any) Cs DF
- Contract limited Cs to 3 Ci/m³
- ALARA limit for contact maintenance drops value to 0.3 Ci/m³
- Cs DF's can be as high as 25,000 but average around 1,100
- IPS would need DF between 5 and 1000 depending on feed and immobilization method

Summary

- Next-generation pretreatment solutions will effect significant cost and risk reductions in the treatment and disposition of HLW.
- > Pursuit of new technologies that offer multi-site benefit is desirable but not always practical.
- ➤ In some cases, development of innovative pretreatment processes tailored to differences in waste compositions and other conditions among sites is necessary.
- > The choice of interim pretreatment process at Hanford is one such case.

Evolution of Pretreatment Technologies

